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ABSTRACT 

Using systems engineering methodology, we build a decision support tool that 

enhances the Navy’s ability to evaluate the economic viability of sites for waste-to-

energy technologies, mirroring the current tool’s capabilities and expanding its use. This 

tool returns recommendations about investing in waste-to-energy technology for a given 

facility or site. The recommendations are actionable results for the user in an easily 

digestible format in Microsoft Excel. The team has examined current Navy systems that 

evaluate waste-to-energy technologies and identified their shortfalls. These gaps directed 

the team’s focus toward the critical areas that required improvement and/or development, 

including specifying required data and data sources. The team conducted stakeholder 

analysis and functional decomposition of the requisite model before constructing its 

additional module to the tool. This study shows the viability of waste-to-energy 

technologies to the Navy and Department of Defense. It supports the development of 

renewable power sources for a green Navy. 
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EXECUTIVE SUMMARY 

This study seeks to improve the Commander, Navy Installation Command 

(CNIC)’s existing Energy Return on Investment (eROI) decision support tool with an 

additional module, which may help increase the prevalence of waste-to-energy (WTE) 

technology within the Department of Defense (DOD). 

The CNIC has developed the eROI tool, giving a measure of the project’s 

maximized return on investment (ROI) value. The ROI is calculated from a sum of 

financial benefits that takes quantitative and qualitative measures into account (Brown 

2015). The eROI computes the ratio of the ROI and the discounted capital expenditure 

for a given WTE project. A ratio that is greater than 1.0 implies that the project benefits 

exceed its cost, which supports an argument for the project to proceed. 

Currently, the eROI allows users to input user-defined quantities to estimate the 

benefit-cost ratio. This estimate assumes two things: that the user completely understands 

those numbers required of him or her and that the types of numbers are all numerically 

comparable to each other and captured by these queries. However, WTE technologies 

require a variety of inputs and complicated methods to craft any estimations for facility 

costs. Major technologies that are mature enough to implement within the Navy include 

incinerators, plasma gasification, and anaerobic digesters. Yet, these technologies are not 

considered in eROI calculations and there is no guidance on what is required for their 

estimation.  

This thesis studied the above WTE technologies and developed a spreadsheet 

module for inclusion in the eROI model. This spreadsheet uses a minimal amount of 

additional information about a potential project to produce three estimates, one for each 

type of WTE facility. The calculations for these estimates are based on scaling formulas 

found primarily in Perry’s Chemical Engineers’ Handbook.  

Source: 

Brown, Jim. 2015. Web EROI Project Development User Manual. CNIC Navy Shore 
Energy Program Development. 
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I. INTRODUCTION 

When it comes to renewable energy, there’s no reason America should 
settle for second best. 

—Senator Martin Heinrich (D-NM) (Wold 2010) 

 
The U.S. Navy’s Shore Readiness Division (N46) posed a question, asking what 

facilities are best suited to repurpose waste products toward power generation, and which 

technologies would be most appropriate for implementation at shore facilities. Providing 

some insight on this question, this study seeks to improve the Commander, Navy 

Installations Command (CNIC’s) existing Energy Return on Investment (eROI) decision 

support tool by adding a module that may increase the diversity and breadth of Waste-to-

Energy (WTE) technology within the Department of Defense (DOD). The eROI model 

currently calculates the economic benefit of new renewable energy projects based on 

construction, demand, current prices, growth, and service utilities. The planned additional 

module will allow a user to evaluate the viability of building one of several WTE 

facilities in the same location. 

A. WTE BACKGROUND 

WTE technologies take what we think of as “waste,” such as sewage effluent or 

commercial trash service, and turn it into energy. For the Navy to select any WTE 

technology, it must produce more value than it costs and be a proven technology, 

competitive with current commercial operations. To compare WTE models, we must 

establish value metrics that are common between the models that also satisfy the 

sponsor’s needs. We will first identify several technologies that fit our scope of research 

that are comparable, then define those common metrics. The technologies chosen 

represent three major methods of WTE processes currently used in the commercial 

environment: Incineration, Anaerobic Digestion, and Plasma Gasification. These three 

methods convert biomass to energy, which accounts for more than 50% of all renewable 
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energy produced within the United States. (Energy Information Administration [EIA] 

2016) 

1.  Incineration 

A waste incineration system raises trash to a high enough temperature to cause 

combustion, producing hot gas and ash. The ash has a largely reduced volume compared 

to the input, making it an efficient way to extend the life of a landfill. The ash can be 

used as a product in some industries or sold to the local community as a construction 

material so long as it is non-hazardous, and if those are not viable options, it goes to the 

landfill (Environmental Services Association [ESA] 2016). Additionally, when the waste 

incinerated includes some metal products, some of the metal can be re-captured via 

recycling methods to be used as an additional source of revenue. 

The gasses produced from combustion vary based on the trash that is burned, but 

a method of filtration for harmful products is required for this method. The gas can be run 

counter-current against the input trash, heating it up to reduce the required heat and 

residency time within the reactor. The gas can also be used to power a turbine-style 

engine, resulting in an energy product for the user.  

In Figure 1, we see one example of this style of power plant. The incineration of 

trash can be environmentally harmful if not properly managed, as it results in effluent 

gasses that need to be scrubbed thoroughly to remove possible sulfur and nitrogen 

products that have negative impacts on the ozone and local air quality. According to 

AENews, the filters themselves then have to be disposed of as hazardous products or 

neutralized to make their storage acceptable (AENews 2016).  
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Figure 1.  Incinerator with Cogeneration. Source: Taylor (2016). 

2. Anaerobic Digestion 

Anaerobic digestion uses a fermentation process to produce methane from organic 

waste inputs, resulting in a biogas that is then scrubbed (concentrated by removing 

contaminants) using a separation tower and either used directly as a product (biogas) or 

partially combusted to create higher-level hydrocarbons that can be used as fuels. 

Anaerobic digestion uses microbiomes that consume the waste and turn it into methane 

and carbon dioxide, the internal chemistry of the process described in Figure 2.  

 

Figure 2.  Digestion Process 
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The type of reaction tank and the environmental factors can greatly affect its efficiency of 

operation. However, it has a low energy input requirement for its conversion factor. An 

example of this style of WTE facility is shown in Figure 3. 

 

 

Figure 3.  Anaerobic Digester Example. Source: NEO Energy (2016). 

Anaerobic digestion is a mature technology, employed for energy production 

since the 1800s. Its effluent gas is used as an energy product, and its resulting “bottoms” 

(the solid product) can be used as an agricultural product or sent to a landfill as a reduced 

volume product. The process does not result in as large a reduction in volume as 

incineration unless the bottoms are incinerated, and the plant produces a noticeable smell 

in the immediate vicinity of the plant. The chemistry of the reaction tank also requires 

monitoring and a significant input of water depending on the type of waste input so that 

the microbiomes continue to be active.  
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3. Plasma Gasification 

Plasma gasification refers to the use of an arcing electrical current on organic 

materials. In the reaction chamber waste rises to a much higher temperature than possible 

by simple combustion, creating an efficiently converted effluent gas stream plus a small 

solid waste stream. This gas (largely hydrogen and hydrocarbons) can then be used as 

synthetic gas (syngas) in place of traditional methane and burned for use in a biogas 

engine or further refined and stored as a fuel source. An additional benefit is that the 

instantaneous conversion does not allow the formation of sulfur and nitrogen containing 

oxygen products (SOX and NOX) meaning that this method produces fewer gasses 

requiring filtration than incineration. The solid waste stream is a slag, inorganic 

compounds that could not be converted to syngas that can exceed 99% purity depending 

on what was input into the machine. They are completely stable and inert and can be used 

in construction products or separated for further processing as metal products 

(HowStuffWorks 2016). Figure 4 shows one example of a plasma gasification facility in 

the same style as some commercial facilities in Japan. 

 

Figure 4.  Plasma Gasification Process. Source: HowStuffWorks (2016). 
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Plasma gasification technology is the newest technology of these three choices, 

recently incorporated in the design for the Gerald R. Ford-class aircraft carrier (NEO 

Energy 2016). The disadvantages of this technology include the high initial cost, the risks 

associated with investing in a newer technology with complicated equipment, and a 

higher maintenance costs over alternatives. 

4. Generalized Processes 

These three types of WTE can be broken down into their common components for 

comparison. When thought of as a function of requisite inputs versus expected outputs 

and values added to each variable, we can imagine a model that is comparable to other 

models based on a cost-benefit basis. Each variable could provide value and/or cost, no 

matter the inner machinations of the system itself. If the user is then provided these 

estimate numbers, they would be better informed of the economic impact if built before 

investing in a more complicated model. With this in mind, it is then useful to examine the 

current tool in use by the DOD to see if improvements or modifications would be 

adequate to provide users with enough information to make a decision about a WTE 

facility. Figure 5 is the generalized process model that will assist with further 

development of a formal economic model for WTE within eROI. 
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Figure 5.  Simplified Input-Output Model. 

B. THE ENERGY RETURN ON INVESTMENT (EROI) TOOL 

The eROI tool is managed by CNIC, serving as a versatile model that estimates 

the costs and benefits of energy-related construction projects. The tool uses complex 

spreadsheets with generic data columns that take user inputs and return a calculation 

based on user-defined local price information, the final result being the “eROI number.” 

Figure 6 is the primary user interface for the tool. The intent of eROI is to inform 

decision makers on how to invest in financially beneficial technologies. A primary goal is 

for the Navy to have a dependable and repeatable process based on research and fact.  
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Figure 6.  Primary User Interface for eROI.  

The eROI spreadsheet model accepts information from Energy Conservation 

Measures (ECMs) via a separate template and breaks the information into 51 relevant 

columns, which are fed into different calculations within the model (Brown 2015). 

Additional information for the project is entered, including project number, reason, cost 

planning/analysis, and construction dates. The model automatically determines whether 

or not it requires additional information. It computes whether the cost to benefit ratio is 

positive, a litmus test for the project’s viability to the navy. This resultant ratio is referred 

to as the “eROI number” of the project, a number our model will also calculate. 

The current model puts weights on different categories of information, putting the 

most emphasis on cost savings / avoidance and the addition of reliable energy to critical 

infrastructure (together accounting for 65% of the total score), while placing lesser 

emphasis on environmental considerations, meeting regulatory mandates, and 

“developing flexible energy infrastructure.” These are important intangibles that are 
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useful, but based less on mathematics and more on the opinions and perceptions of the 

project. Using eROI as an analytical aid, it can become clearer to decision makers which 

projects are feasible and remove those that do not need to be investigated further. If this 

thesis will potentially add value to the eROI model, it is important to see where it fits into 

the process through a context diagram to better scope additional functionality 

requirements. 

C. THE PROBLEM AT HAND 

Our sponsor posed two research questions for this study: 1) How do we determine 

which facilities have the resources to implement WTE technology? 2) What type of 

technology should we implement? The method to conduct this analysis would be to 

compare similar technologies based on their economic predictions, picking a model that 

provides a positive cost-to-benefit ratio. The problem that the typical eROI user has is not 

whether or not it is profitable or useful to perform an analysis, but where to begin. 

Therefore, providing the user with a starting point will be one of this project’s primary 

goals. This thesis will consider how the existing eROI decision support tool can be 

improved with an additional module that will evaluate the viability of WTE technology. 

To develop this module, it is important to examine that research which has already been 

conducted and review appropriate literary sources on the subject matter. 
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II. LITERATURE REVIEW 

To get a useful cost estimate, original sources of cost estimation were examined 

for each type of WTE technology and those numbers correlated using formulas found in 

Perry’s Chemical Engineers’ Handbook, hereafter referred to as Perry’s. The original 

sources used were from Biocycle magazine, the American Society of Mechanical 

Engineering, and the Waste Management and Research Group. Past work relevant to this 

topic has also been completed by the DOW Chemical Company, the American Institute 

of Chemical Engineers, and various other research groups. All of these sources played a 

role in crafting a new tool for eROI users. 

A. PAST WORK 

There has been no direct past work conducted to modify eROI and add a module 

that would perform the functions requested by N46. There have been studies that 

correlated cost estimation models with different plant types, but no specific work for 

eROI in this line. We will be using chemical engineering theory from Perry’s Chemical 

Engineers’ Handbook coupled with studies conducted on operational plants to create an 

estimate of actual cost and production data (Perry 2008). 

B. PERRY’S CHEMICAL ENGINEERS’ HANDBOOK 

 Perry’s has been a source for chemical engineers in their calculation work since 

John H. Perry penned the first edition in 1934 (Perry 2008). The book itself covers topics 

from foundational mathematics to the most recent process safety requirements in place. 

The chapter primarily used in this thesis was section 9, “Process Economics.” 

Within section 9 is the subsection “Capital Cost Estimation.” It is here that we 

find a discussion of the most significant factors to consider when estimating the cost of 

any investments pertaining to the planned facility. This information will also make it 

clear what type of facility we should construct based on our data. From this, we see that 

with knowledge of our major equipment and the material balances (things flowing in and 

out of the plant), we can achieve a reasonable estimate of the cost (Perry 2008). Perry’s 
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collected and plotted the cost data for a multitude of plants and equipment versus their 

capacity, which resulted in the discovery of the six-tenths rule as shown by Figure 7. 

 

Figure 7.  The Six-Tenths Rule. Source: Perry (2008). 

The six-tenths rule states 𝐶𝐶𝐸𝐸,2 = 𝐶𝐶𝐸𝐸,1 �
𝑆𝑆2
𝑆𝑆1
�

.6
, where CE and S refer to the equipment 

cost and processing capacity respectively of plants 1 and 2. The level of error incurred by 

using this formula is acceptable for the scope of our estimation per a discussion with the 

sponsor. In similar line, when examining total capital costs of plants using the same 

process it was observed that they varied closely with their capacities, that is 𝐶𝐶𝐶𝐶,2 =

𝐶𝐶𝐶𝐶,1 �
𝑆𝑆2
𝑆𝑆1
�

.7
where CC refers to the total capital cost of each plant and S refers to the 

processing capacity of the plants. This is known as the seven-tenths rule (Perry 2008). To 

ensure that equivalent dollars are being compared, we must adjust each number per its 

annual cost factor. While these rules will assist us in our calculations, it is important to 

have real-world data as well to base our cost estimation efforts on. 
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C. STUDIES FOR CORRELATION 

For our investigation, we use four separate studies. The first study is about 

anaerobic digestion and thoroughly details a strategy for cost estimation based on input 

type and amount (Whyte 2001). The second study was an assessment for installing a 

plasma gasification plant in Florida, which was a metastudy of sorts that created a 

generalizable cost estimation formula for energy plants of the same type (Clark 2014). 

The third (Athanasiou 2015) and fourth (Tang 2012) studies were done on incineration 

units and included methods to calculate capital costs, fees, and benefits from the same. 

 

1. Anaerobic Digestion Costs 

This Biocycle article, “A Rough Guide to Anaerobic Digestion Costs and MSW 

Diversion,” details the efforts of a senior consulting team within the Enviros RIS, an 

environmental consulting firm that specializes in waste and energy management issues 

(Global Recycling Network [GRN] 2016). It gives a range of estimated capital and 

annual costs depending on tons input for 10,000 to 100,000 tons per year (TPY) and 

types of waste as either source-separated organics (SSO) or as mixed waste (MW). Table 

1 was adapted from the data in this article to make a correlation of values simpler to 

digest for our potential product.  

Table 1.   Anaerobic Digestion Estimation Factors. Adapted from 
GRN (2016). 

 min max 
Range (tpy) 10,000 100,000 
SSO Capital ($/tpy) $625  $245  
MW Capital ($/tpy) $690  $265  
Net Annual Cost SSO ($/tpy) $107  $46  
Net Annual Cost MW 
($/tpy) 

$135  $63  
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This article also provides an estimate for the value of the digestate produced 

(values range from $1 to $5; the reference suggests using $2 is a safe estimation) and that 

55% methane biogas is produced at a rate of 115(SSO) and 95(MW) m3 per ton design 

capacity. Finally, we note that this paper’s publish date was OCT 2001, meaning we must 

cost adjust all prices for use in our model. 

2. Economic Feasibility of Plasma Arc Gasification  

The North American Waste-to-Energy Conference (NAWTEC) is a yearly 

meeting of professionals who work within the solid waste management community. The 

group that hosts this conference is the Solid Waste Association of North America 

(SWANA), which was established in 1961 as a local governmental program. This article, 

“Economic Feasibility of a Plasma Arc Gasification Plant, City Of Marion, Iowa” was a 

study developed for evaluating a proposed plasma gasification project in Iowa, but its 

final product was generalizable for projects to build the same industry elsewhere. The 

study specifically looked at plants with capacities ranging 150 to 600 tons per day (TPD) 

and gives availability data for the plant, as well as a cost/benefit estimation based on 

capacity. Table 2 is a summary of some of the useful values from this article. This paper 

was published in 2010 and as such needs to be cost-adjusted for present day values. 
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Table 2.   Plasma Gasification Variables. Source: Clark (2016). 

 
 

3. Feasibility Analysis of Solid Waste Mass Burn 

Waste Management and Research (WM&R) is a journal focused on sustainable 

waste management practices and other topics that pertain to WTE technology. This 

specific paper, “Feasibility Analysis of Municipal Solid Waste Mass Burning in the 

Region of East Macedonia—Thrace in Greece,” focuses on a feasibility study that 

provides helpful formulas for quick calculations including the energy produced by 
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combustion of mixed waste types, and capital and operating costing formulas (using a 

formula similar to the seven-tenths rule). Additionally, it provides the process start to 

finish for conducting a feasibility planning effort, which was helpful when determining 

what numbers specifically had to be calculated versus what numbers could be reasonably 

estimated.  

4. Cost-Benefit Analysis of Waste Incineration 

The fourth article reviewed, “A Cost-Benefit Analysis of Waste Incineration with 

Advanced Bottom Ash Separation Technology for a Chinese Municipality—Guanghan” 

was a master’s thesis from the Vienna School for International Studies (Tang 2012). The 

researcher compared large amounts of real-world data to get cost and benefit data for 

incinerator units that was more generalizable. This study helped correlate the plot data 

and check for accuracy in measurement versus real world data and provided some 

numbers for the capital cost estimation of incineration units. 

D. THE EROI HANDBOOK 

CNIC’s Navy Shore Energy Program Development published, along with the 

eROI tool, a Project Development User Manual that thoroughly covers each section of 

the eROI tool and how to parse a project into it. It explains the end result of the eROI 

number, and goes through calculations in its appendices to ensure the user has a basis to 

defend results. When completed, the work done in this thesis was added in an appendix to 

the handbook to explain what the module calculated and how each calculation worked 

and included a list of references. 
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III. SYSTEMS ENGINEERING METHODOLOGY 

Systems engineering is the process of engineering human-made systems through a 

methodical means to ultimately end up with a better process than what was began with. 

There are multiple methods to accomplish this process, from the standard V-models to 

complex waterfall methods, but ultimately each description of a system is a unique aid in 

the understanding and furthering of that which it models. By creating an encompassing 

model for our WTE system, we can ensure that our model is created via a logical and 

traceable process. 

A. CONTEXT DIAGRAM / BOUNDARY ANALYSIS 

To better understand the environment where our potential solution must operate, it 

is prudent to examine the boundaries of the system and any constraints or requirements 

imposed by interfaces with external systems. One tool that is useful in doing this is the 

External Systems Diagram, seeking to capture the flow of interactions between outside 

systems and the primary system of interest. Figure 8 allows a general look at the physical, 

functional, and behavioral boundaries between each functional group. 

 

Figure 8.  Decision Support Tool Context Diagram. 
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We can see that eROI’s only interface is with the user, based on the diagram. 

Interactions with the model will be to retrieve user input, and interactions with the user 

will be to garner additional information in a simple and easily understood format. One 

concern is error reduction of a user’s input; automation helps reduce errors of repetitive 

tasks such as updating tables and constants that the model relies upon. With the 

interactions thus explored, we now can generate a set of requirements that our model 

must meet to be an effective and useful tool from which to glean information for 

decision-making. 

B. DEVELOPING SYSTEM REQUIREMENTS 

The system requirements are a set of elements that are essential to the 

construction of a successful system, describing the functions that a system must perform 

to accomplish its intended purpose (Blanchard 2011, 61). Defining these elements is 

crucial at the start of system design, as they drive the design process and allow a way to 

ensure that no extraneous or incorrect elements are added to the system. The required 

functions are defined by the needs of the user who will be interacting with the system, 

and described in the following sections. As such, a brief stakeholder analysis should be 

conducted to ensure that all needs are addressed. After this, functional analysis maps out 

how the module will work before we define the system’s requirements and ensure that the 

product will fulfill them. 

1. Stakeholder Analysis 

Any party or person who has an interest in the development of this tool, whether 

direct or indirect, can be viewed as a stakeholder. With systems engineering, the second 

most important process is defining the problem, and problem definition is based on the 

needs of all stakeholders involved. Our problem statement is “How can we improve the 

existing eROI decision support tool with an additional module that will evaluate the 

viability of WTE technology.” 

Table 3 identifies all stakeholders and describes each of their interests in the 

project. The table ranks each party by priority, from first to last. The “primitive needs” 
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column shows each stakeholder’s primitive need, while the next two columns expand to 

give effective needs and some concerns the stakeholder might have. 

Table 3.   Stakeholder Analysis. 

 
 

The most important stakeholder is the user, as the module being developed has the 

primary purpose of giving useful information in an easily understood format to them. 

Secondary is N46, the organization who requested that such a module be developed, and 

Priority Stakeholder Type Primitive Needs Objective / Effective Needs Concerns

• Tool follows eROI existing 
format

• Goodness of fit 
(is the model 
accurate?)

• Tool is clear about required 
inputs

• Ease of use (is 
the model clear 
about 
requirements?)

• Tool can operate without all 
possible inputs and will 
delineate which apply to 
different models

• Time input 
(does the model 
require too much 
information?)

• Tool gives an economic 
analysis that allows 
comparison to other project

• Implementation 
(does the model 
fit into the already-
accepted 
timeline?)

• Tool calculates the eROI 
number

• Estimate provides actionable 
information

• Goodness of fit 
(is the model 
accurate?)

• Resources exist for further 
assessments

• Further 
investigation (will 
the path forward 
be clear to the 
user?)

• Method to answer is 
properly documented
• Cost estimate • Funding

• Budget • Clear project 
goals/deadlines

• Clear path forward
• User-friendly control 
interface

• Timelines

• Clearly defined mission 
objectives

• Funding 
sources

• "Green" Project
• Accurate results

1 Individual User Direct User Tool that is simple, effective, 
clear about required inputs

2 N46 Sponsor/Client Proper cost-comparing 
assessment for decisionmaking

3 Military Contractors Sponsor/Client A decision for either further 
research or a go-ahead project

4 US Navy / DOD 
Facilities

Sponsor/Client A project to move forward on
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tertiary are the contractors and Navy Organization as a whole as they will potentially be 

acting on the information that the user has produced. From this stakeholder analysis and 

our knowledge of the shortcomings of the current tool available to the user, we can now 

identify the functions that our additional module must encompass. 

2. Functional Analysis 

The functional analysis of a system gives a detailed analysis of what the system 

must do to meet the stakeholders’ effective needs. The hierarchy outlined in Figure 9 

begins at the highest level of the system (the additional eROI module overall), and breaks 

down into lower level functions while remaining broad enough for multiple solutions in 

terms of the overall scope of the project. The lines connecting each child function to its 

parent show similarities, such that all child functions under one branch are a family 

(relate to the same functionality). 

 

Figure 9.  Functional Hierarchy. 

While the Functional Hierarchy is a useful tool for breaking down higher-level 

system functions and sub-functions required of the system, it does not adequately display 

these sub-functions in a logically sequential manner. Creating a System Functional List, 

as done in Table 4, gives clarification to each sub-function and allows for the creation of 

a basic Functional Flow Block Diagram (FFBD). 
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Table 4.   System Functional List. 

Level Function Description 

1.0 Retrieve Data The sequential gathering of data from other eROI 
tabs that fills reference cells within the data sheet. 

1.1 Access eROI Sheets Properly reference and access data on different eROI sheets 

1.2 Find Appropriate Cells Find the correct data on the correct spreadsheet, even if the 
cells were switched or moved 

1.3 Pull values from cells Bring data from other sheets to a local cell block 

2.0 Take Inputs The direct user inputs. 

2.1 Accept user inputs Allows user input, notifies user if input is wrong or missing, 
including values that appear to be out of a “normal” range. 

3.0 Process Data The evaluation of collected data with a goal of 
creating a comparable number. 

3.1 Pull data from sheet Reference appropriate sections of cell block (1.3) and detail 
any that are missing 

3.2 Evaluate data 
Use appropriate formulas and inputs to give an output 
estimation where enough data exists, and an indication that it 
does not exist when there is insufficient data. 

4.0 Output data The display of the results of data processing to the 
user 

4.1 Push data to dashboard Display the user-created data on a visible “dashboard” for the 
user. 

5.0 Update The update of the WTE tab to ensure that cells and 
sheets are appropriately referenced. 

5.1 Provide resources for 
constants 

Give the potential user the location of all “constants” to 
ensure accuracy 

5.2 Provide referenced 
cells list 

Give the program maintainer a list of all referenced cells so 
that if updates are made to other sheets the integrity of the 
sheet is maintained. 

5.3 Provide changelog Provide the program maintainer a change log to ensure that 
updates are properly addressed. 
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3. Functional Flow Block Diagram 

The basic functional flow block diagram shown in Figure 10 details how each 

function included within the module interconnects, which shows a clear traceable path of 

how the module allows it to come to its solution. For our model, the FFBD is 

straightforward. 

 

Figure 10.  Basic Functional Breakdown 

Before calculation, the system will update numbers for price indexes in 5.0 so that 

the model has accurate information before running. Next in 1.0 the price of electricity is 

referenced from earlier entries into the spreadsheet, which plays a large role in 

calculating whether or not a process is profitable. In 2.0, the user inputs the appropriate 

researched values that are then evaluated in 3.0 to update the final products and graph, 

then pushed to the dashboard view in 4.0. 

4. Functional Architecture 

The functional architecture of our system describes it in terms that we can 

attribute functions to each element. It connects our system through the top-down style of 

describing functions, operational interfaces, scenarios, and their environment. At its most 

basic level, it is a description of how we will get to a solution from the needs that we 

have detailed. 

The system as described can be fulfilled by modifying the existing eROI model to 

add a spreadsheet that takes user inputs through specified input areas, pulls data from 
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existing portions of the sheets, and calculates a resultant for the user. It can fulfill all 

requirements through this method while keeping within the existing structure, as well as 

adding value to the existing system and additional functionality. It can also be updateable 

with a low amount of user research via Excel-based macros. 

C. REQUIREMENTS 

The requirements for the system are the elements that it must include. They are 

the basis of the solution to the problem statement. The requirements follow the functional 

analysis of what our system must do in order to accomplish stakeholder objectives. 

a. The Module Shall Include a Numerical and Visual Way to View the 
Results 

The module shall have at least two ways for the user to view its results, preferably 

in similar format to the rest of the eROI model. This will ensure that all information can 

be understood without introducing the user to a new, unfamiliar format that could lead 

them to misinterpret the results. This may be accomplished by having a “dashboard” 

view, a simplified area close to where the user inputs their information so that they do not 

have to scroll or search for information. 

b. The Module Shall Only Require Information Obtainable at No 
Additional Cost to the User 

This tool is designed to be user friendly and simple such that it can provide a 

rudimentary estimate with as little additional user time spent on it as possible. If the 

model requires too many inputs or those inputs require funding, the likelihood of it being 

completed or completed correctly sharply decrease and it becomes less useful. 

c. The Module Shall Be Intuitive or Provide Guidelines for User 
Interaction 

Without appropriate guidance at every step, the chance of a user inputting 

incorrect information or correct information in an incorrect area is increased. An addition 

to the existing eROI instruction manual must be included, and the presence of guidance 

in each user entry area increases the reliability of the tool. 
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d. The Module Shall Provide Any Resources Required for Updates to the 
User 

When dealing with a model that gives a cost estimate based on present and future 

dollars, the model must be able to retrieve the appropriate price indices or it loses its 

relevancy quickly. To reduce the strain of research on the user, a way for updating the 

model must either be automated or have clear and concise instructions provided such that 

there is low risk for error. 

e. The Module Will Only Provide a Preliminary Estimate, and This Must 
Be Made Evident to the User 

The formulas used in the development of this model provides the user with a 

rough cost/benefit estimate of each technology’s cost and value. The process of the 

estimate is transparent to the user in the additional literature provided. 

D. ALLOCATING FUNCTIONS TO REQUIREMENTS 

To verify that all requirements have been met, they have been matched to their 

applicable functions as shown by Table 5. 

We see that all requirements are verified as covered by the model, but the model 

also needs to be validated as functioning properly. In order to validate the model, its 

product (the calculated costs and values) must be tested against real world data. This 

thesis sought to conduct type 3 and type 4 testing but was unable to obtain adequate data 

to test the model against. The sponsor was consulted and has agreed to conduct this 

testing. The goodness of fit of the model can be calculated by graphing the difference 

between hypothetical and actual and this error categorized as systematic (where some 

part of the formula is wrong) or random (where the model or data are inadequate for this 

model). All requirements are met by our choice to create a module within the existing 

eROI model, so we proceed with the model development and creation. 
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Table 5.   Functional Allocation for Requirements. 

Level Function Requirement 
a 

Requirement 
b 

Requirement 
c 

Requirement 
d 

Requirement 
e 

1 Retrieve Data X         

1.1 Access eROI 
Sheets X         

1.2 Find Appropriate 
Cells X         

1.3 Pull values from 
cells X         

2 Take Inputs X X X     
2.1 Accept user inputs X X X     
3 Process Data         X 

3.1 Pull data from 
sheet         X 

3.2 Evaluate data         X 
4 Output data X       X 

4.1 Push data to 
dashboard X       X 

5 Update X X X X   

5.1 Provide resources 
for constants X X X X   

5.2 Provide referenced 
cells list X X X X   

5.3 Provide changelog X X X X   
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IV. MODEL DEVELOPMENT 

Having chosen to create a module for eROI, we examine the environment in 

which to build it. Microsoft Excel is a highly flexible program that is used throughout the 

military. It does not requiring any additional installations for users or downloads other 

than the standard Microsoft Office suite already present on most DOD PCs . In addition, 

by building the module within an existing model, we ensure that distribution will occur 

directly to personnel who would already be making these considerations. The next 

important step is looking at what specifically needs to be included within our model for it 

to be functionally sound before we start considering formulas needed for each cell. 

A. MODEL DESIGN 

The end purpose of the model is to provide additional information to the user 

about WTE technologies that could fit the needs of a military installation. To that end, 

there are four measures of effectiveness (MOEs) for WTE technologies that help us 

determine its appropriateness for the facility: Capital Cost, Availability, Reliability, and 

Sustainability.  

Capital Cost refers to the up-front costs associated with building the new 

technology. Without appropriate input of funding the technology cannot be built. 

Availability refers to the ability of the technology to physically be constructed in the 

location. If there is not enough room or an ideal location then the technology cannot be 

expected to succeed. Reliability refers to the expected lifetime of the technology and 

maintenance required. Longer lifespans and reduced maintenance costs are important to 

keeping a facility profitable. Sustainability refers to the facility’s ability to be provided 

for by the local resources available to it.  

Based on the requirements set forth: Sustainability is the most important metric as 

it specifically is addressed by the problem statement. Reliability and Capital Cost are 

equally important as they drive whether or not building the technology is a financially 

sound decision. Availability is least important though worth consideration due to the 
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military’s supply network. The only metric that this module will seek to calculate is 

Sustainability, the other three metrics should be taken into consideration by the user as 

non-numerical factors when choosing whether or not to invest in the technology. 

B. MODEL CONSTRUCTION 

Keeping the MOEs in mind, the current eROI model was examined for both style 

and function. The result is an “eROI number” that is a benefit-to-cost ratio which 

includes several factors that require the user to make a judgment call about the project. If 

this results in an eROI number that is greater than one, then the proposed energy 

technology has merit for further research and investigation. If the number is less than one 

but meets certain requirements, it could merit further investigation due to providing some 

other necessary benefit that the military deems worth the cost, or perhaps a benefit that 

was not examined by the study. The current eROI summary that users see is shown in 

Figure 11. Otherwise, the eROI sheet is meant to assist in removing undesirable projects 

before significant resources are allocated toward them. 

 

Figure 11.  eROI Number Calculation. 

As a comparison for this process, an eROI number should be the result of the 

additional module to simplify user analysis of the eROI model. This number would 

additionally be a concise way to compare the results of the three selected WTE 

technologies against one another on a dashboard view, displaying to the potential user 
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costs, benefits, and the viability of a feasible energy project. To calculate the three eROI 

numbers, each WTE technology has a different set of calculations and cost/benefit 

balances that need to be detailed properly. The Chemical Engineering Plant Cost Index 

(CEPCI) will be used to adjust numbers from different years to be current-year equivalent 

for all capital costs. 

1. Anaerobic Digestion Calculations 

For Anaerobic Digestion, the seven-tenths rule from Perry’s (Perry 2008) and the 

sample study from Biocycle (GRN 2016) magazine were used. A plant estimated at 34 

tons/day processing power and a CEPCI of 100 was valued at $8.5 million. The capital 

cost formula was then applied using the ratio of user input tons/day of material versus the 

sample plant and then adjusted via the current CEPCI. Costs per year were assumed at 

10% of the capital costs (Perry 2008). The revenue is a summation of the digestate and 

electricity produced, both of which are dependent on the percentage of organic materials 

that comprise the input waste. The digestate can be reasonably estimated to have a value 

of $60 per ton. Methane content of biogas can vary, but normally comprises 

approximately 55% by volume of the resultant gas. This lower methane content results in 

the biogas producing energy at approximately 6 kwh per cubic meter of methane, with 

expected engine efficiency of .4 when using combined heat and power engines (Perry 

2008). 
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Where Eprod is the energy produced (MWH), PE is the price of energy � $
𝑀𝑀𝑀𝑀𝑀𝑀

�, 

Digestprod is the amount of digestate produced �𝐸𝐸𝐶𝐶𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

�, PD is the price of the digestate 

� $
𝐸𝐸𝐶𝐶𝑅𝑅
�, Feetip is the price per “tip” of a garbage truck � $

𝐸𝐸𝐶𝐶𝑅𝑅
�, Wwaste is the weight of 

incoming waste (tons), and RECs are renewable energy credits given to renewable energy 

producers that have a value � $
𝑀𝑀𝑀𝑀𝑀𝑀

�. 

2. Plasma Gasification Calculations 

Plasma gasification will take input waste of any mixture and turn it into Syngas, a 

flammable mixture of methane and other combustible gasses typically burned for 

electricity, and slag, a mixture of ash and inorganic materials that are processed to obtain 

purified components or landfilled. Estimation via equipment scale-up was conducted to 

calculate the capital cost of the plant. The tons per day of input waste was multiplied by 

$220,000, the average dollar cost per ton for a basic mass-burn plant equipment setup. 

This number was then scaled back by 25% to account for equipment that is covered by 

specific large pieces of equipment for estimation purposes (Clark 2016). Other basic 

equipment costs are added, including the scale house cost (where the waste enters the 

plant), the utility interconnections cost, the waste pre-processing (where the waste is 

shredded as much as possible), the plasma arc furnace itself, and the heat exchanger that 

keeps the reaction vessel, where the conversion happens, at an appropriate temperature. 

All of this produces a total capital cost, which is adjusted to current year dollars. 

The energy produced is estimated at 533 kW per ton of waste input, though the 

actual amount will vary, largely based on the types of input waste and other factors. 

Table 2 shows that slag can be reasonably estimated at 350 lbs. per ton processed, and 

that the slag can be valued at approximately the price of the metals contained therein, 

$228 per ton processed. Additional revenue comes from the local tipping fee (averaged at 

$35/ton, entirely location dependent) and Renewable Energy Credits from the 

government (volatile market, very low estimate of $1/MWH produced via renewable 

sources). 
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The Operation and Maintenance cost of a plasma gasification plant can be 

estimated to be approximately 10% of its capital cost per year based on the model 

presented in the NAWTEC article (Clark 2016). 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �� $220,000

𝐸𝐸𝐶𝐶𝑅𝑅 𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸
� ∗ (𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸) ∗ .75 − $1,200,000� + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝑒𝑒𝑅𝑅𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸  Eq. 7 

𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶  Eq. 8 
𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

= .1∗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
365∗𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝑎𝑎𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶

        Eq. 9 

𝑉𝑉𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶 Eq. 10 
𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

= �𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 ∗ 𝑃𝑃𝐸𝐸� + �𝑆𝑆𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 ∗ 𝑃𝑃𝑆𝑆� + �𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸� + �𝑅𝑅𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑�Eq. 11 

𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 = 533 𝑘𝑘𝑤𝑤ℎ
𝐸𝐸𝐶𝐶𝑅𝑅 𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸

∗ 𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸  Eq. 12 
 

Where Eprod is the energy produced (MWH), PE is the price of energy � $
𝑀𝑀𝑀𝑀𝑀𝑀

�, 

Slagprod is the amount of slag produced �𝐸𝐸𝐶𝐶𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

�, PS is the price of the slag � $
𝐸𝐸𝐶𝐶𝑅𝑅
�, Feetip is 

the price per “tip” of a garbage truck � $
𝐸𝐸𝐶𝐶𝑅𝑅
�, Wwaste is the weight of incoming waste (tons), 

and RECs are renewable energy credits given to renewable energy producers that have a 

value � $
𝑀𝑀𝑀𝑀𝑀𝑀

�. 

3. Incinerator Calculations 

Incinerators are some of the oldest and most basic WTE technology, and as such 

are well understood for cost estimation purposes. A standard mass-energy burn plant can 

be estimated at $220,000 times the input tons per day for capital costs (Clark 2016). 

Additionally, taking into consideration losses due to efficiency and parasitic electricity 

costs the average amount of electricity produced is 200 KWH per ton of waste burned 

daily. The process reduces waste volume by up to 90%, meaning there is still 1/10th of the 

mass left to bury in landfills. Additionally, due to simplistic design, the operations and 

maintenance cost per day is approximately 3% of capital cost per day (Tang 2012). 

Power produced via this method is less efficient than the other methods, achieving 
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average results of 280 kwh per ton waste burned, and the resulting ash is not pure enough 

to merit recycling efforts (Tang 2012). 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � $220,000

𝐸𝐸𝐶𝐶𝑅𝑅 𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸
� ∗ (𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸)   Eq. 13 

𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶  Eq. 14 
𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

= .03∗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
365∗𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝑎𝑎𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶

   Eq. 15 

𝑉𝑉𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶  Eq. 16 
𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

= �𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 ∗ 𝑃𝑃𝐸𝐸� + �𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸� + �𝑅𝑅𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑�  Eq. 17 
𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 = (280 𝑘𝑘𝑘𝑘ℎ) ∗ (𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸)   Eq. 18 
 

Where Eprod is the energy produced (MWH), PE is the price of energy � $
𝑀𝑀𝑀𝑀𝑀𝑀

�, 

Feetip is the price per “tip” of a garbage truck � $
𝐸𝐸𝐶𝐶𝑅𝑅
�, Wwaste is the weight of incoming 

waste (tons), and RECs are renewable energy credits given to renewable energy 

producers that have a value � $
𝑀𝑀𝑀𝑀𝑀𝑀

�. 

4. User Interface 

The user interface is designed to keep the user focused solely on the first screen that 

comes up without a direct need to progress further down the spreadsheet unless supporting 

material is required. Figure 12 denotes the first screen the user can see when the 

spreadsheet is maximized. Within it is the User Input, Dashboard, and Graph sections that 

make it clear what is required of the user and gives the user the simple estimate requested. 

 

Figure 12.  User Dashboard. 
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Below the user dashboard is the non-editable section of the model, where the 

calculations happen. This section is important for when the user wants to understand 

where the numbers come from or when the model is updated. Figure 13 also shows the 

further references included for each model type to aid in the understanding of what 

exactly the user is calculating. 

 

Figure 13.  Dashboard Calculations. 

Following the calculations is the generated graph data shown in Figure 14. Based 

on user input seen in Figure 12, the numbers automatically adjust the start and end dates. 

The price indices pull themselves from an internal table in eROI that is updated yearly.  
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Figure 14.  Graph Calculations. 

The plant cost calculation section, shown in Figure 15, is included for Plasma 

Gasification. This calculation must be conducted via the “most expensive equipment” 

method, since the direct cost of some of this equipment would have a much more 

profound effect and incur a base level cost than other estimation methods. 

 

Figure 15.  Plasma Gasification Cost. 
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In addition to the model, it was important to provide a user manual that ensured 

user input into the model was accurate.  

5.  Supporting Documentation 

To make the additional module useful for a typical eROI user, supporting 

documentation was developed in the style of the eROI handbook that details similar 

specifics to this report, including how the numbers for each section are sequentially 

calculated and further reading for each WTE technology to achieve a proper 

understanding of the technology. A copy is included in the Appendix. 

C. MODEL TESTING AND REFINEMENT 

This model was developed solely from existing source data as stated above. As 

with any model, before inclusion into the eROI model it will be tested against real world 

data provided either by a DOD source or a researcher with appropriate authority to gather 

such information. When demonstrated for the sponsor, the model was accepted as a proof 

of concept for additional refinement. Further refinement will be as a result of type 3 and 4 

testing, certification, and field performance data that allows users to directly update the 

model with the eROI team.  
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

This research sought to improve the CNIC’s eROI decision support tool through 

the development of an additional module that examines WTE technologies more 

thoroughly than the current model. Inclusion of this module provides a measure of a 

WTE project’s maximum ROI in comparison with other technologies. It assists leaders 

throughout the Navy and DOD to make better-informed decisions with regard to energy 

and sustainability issues. 

The major findings from this thesis support the premise that the feasibility of a 

location for WTE is testable with user-gathered data. These findings are supported by 

multiple sources outside of the DOD and agree with similar findings for commercial 

entities operating WTE facilities. Once a preliminary look has been conducted, a more 

thorough investigation of the best choice from this tool will provide accurate estimates of 

the value that the facility provides to the DOD. 

The U.S. Navy has a variety of options for energy generation that do not rely on 

environmental factors. WTE technology has proven that it can provide a steady stream of 

power while also providing the benefit of reducing waste to landfill. Rigorous study of 

the formulas in the WTE module shows robustness to examine new conditions. The result 

is a way ahead for DON and DOD to test WTE technologies at different scales at 

specified locations. 

There is no question that WTE technology has many positive benefits for its use. 

Creating energy and increasing the life of landfills by double or more can be a significant 

revenue stream to any user. The type of facility built will determine what it needs to be 

profitable. Building an analytical tool is only the first step in answering the sponsor’s 

problem. It is important to the feasibility analysis that is integral to conceptual and 

preliminary design. 
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The crux of the research is in discovering and incorporating valid formulas for 

understanding WTE technologies. The resultant tool can predict the value of a WTE 

facility given inputs (waste) available at a military base. The user input data is simple and 

readily available for military sites.  

 

B. RECOMMENDATIONS 

Additional technologies for inclusion in the model or different methods of 

estimation are other areas that require continued research. Validation of the model against 

actual data is a necessary step to increase usage of the model. 

Data should be gathered on several facilities in use within the United States. The 

data should be tested within the model and the errors graphed so that the error can be 

classified as systematic or random. If the error is within an acceptable range for the 

sponsor, then the module will fulfill its purpose and no modifications are needed. If the 

estimate falls outside of the sponsor’s acceptable range, but are systematic, then the 

formulas will need a cost factor added. If the errors are randomly dispersed, then the 

model will need to be reworked to better fit the data. 

There are additional cost factors that require further investigation, specifically the 

effect of plant shutdown costs and differences in tipping fees. Plant shutdown costs could 

help or harm the feasibility of a plant, depending if the equipment can be sold for profit 

or must be scrapped. This one-time scalable cost can be added into the spreadsheet via a 

cell already dedicated to the number. The eROI cost-benefit analysis includes some 

factors that affect the final number but are opinion based rather than calculated. The 

additional module developed does not adequately account for these cost factors, but they 

should be static values that always affect the outcome of each type of facility. 
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APPENDIX. WASTE TO ENERGY TAB, EROI MANUAL 

This guide is to provide further information on the additional calculation tab for 

Waste-To-Energy (WTE) projects. This tab may be used to evaluate if further 

investigation is merited on an existing base for any of three types of WTE projects. As a 

brief background, this tab covers research done on Incineration, Anaerobic Digestion, and 

Plasma Gasification as methods of generating energy from traditional waste products.  

A. INCINERATION 

A waste incineration system raises trash to a high enough temperature to cause 

combustion, producing hot gas and ash. The ash has a largely reduced volume compared 

to the input, making it an efficient way to extend the life of a landfill. The ash can be 

used as a product in some industries or sold to the local community as a construction 

material so long as it is non-hazardous, and if those are not viable options it goes to the 

landfill (Environmental Services Association [ESA] 2016). Additionally, when the waste 

incinerated includes some metal products, some of the metal can be re-captured via 

recycling methods to be used as an additional source of revenue. 

The gasses produced from combustion vary based on the trash that is burned, but 

a method of filtration for harmful products is required for this method. The gas can be run 

counter-current against the input trash, heating it up to reduce the required heat and 

residency time within the reactor. The gas can also be used to power a turbine-style 

engine, resulting in an energy product for the user.  

In Figure 16, we see one example of this style of power plant. The incineration of 

trash can be environmentally harmful if not properly managed, as it results in effluent 

gasses that need to be scrubbed thoroughly to remove possible sulfur and nitrogen 

products that have negative impacts on the ozone and local air quality. According to 

AENews, the filters themselves then have to be disposed of as hazardous products or 

neutralized to make their storage acceptable (AENews 2016).  
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Figure 16.  Incinerator with Cogeneration. Source: Taylor (2016). 

B. ANAEROBIC DIGESTION 

Anaerobic digestion uses a fermentation process to produce methane from organic 

waste inputs, resulting in a biogas that is then scrubbed (concentrated by removing 

contaminants) using a separation tower and either used directly as a product (biogas) or 

partially combusted to create higher-level hydrocarbons that can be used as fuels. 

Anaerobic digestion uses microbiomes that consume the waste and turn it into methane 

and carbon dioxide, the internal chemistry of the process described in Figure 17.  

 

Figure 17.  Digestion Process 
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The type of reaction tank and the environmental factors can greatly affect its efficiency of 

operation. However, it has a low energy input requirement for its conversion factor. An 

example of this style of WTE facility is shown in Figure 18. 

 

 

Figure 18.  Anaerobic Digester Example. Source: NEO Energy (2016). 

Anaerobic digestion is a mature technology, employed for energy production 

since the 1800s. Its effluent gas is used as an energy product, and its resulting “bottoms” 

(the solid product) can be used as an agricultural product or sent to a landfill as a reduced 

volume product. The process does not result in as large of a reduction in volume as 

incineration unless the bottoms are thereupon incinerated, and the plant produces a 

noticeable smell in the immediate vicinity of the plant. The chemistry of the reaction tank 

also requires monitoring and a significant input of water depending on the type of waste 

input so that the microbiomes continue to be active.  
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C. PLASMA GASIFICATION 

Plasma gasification refers to the use of an arcing electrical current on organic 

materials. In the reaction chamber waste rises to a much higher temperature than possible 

by simple combustion, creating an efficiently converted effluent gas stream plus a small 

solid waste stream. This gas (largely hydrogen and hydrocarbons) can then be used as 

synthetic gas (syngas) in place of traditional methane and burned for use in a biogas 

engine or further refined and stored as a fuel source. An additional benefit is that the 

instantaneous conversion does not allow the formation of sulfur and nitrogen containing 

oxygen products (SOX and NOX) meaning that this method produces fewer gasses 

requiring filtration than incineration. The solid waste stream is a slag, inorganic 

compounds that could not be converted to syngas that can exceed 99% purity depending 

on what was input into the machine. They are completely stable and inert and can be used 

in construction products or separated for further processing as metal products 

(HowStuffWorks 2016). Figure 19 shows one example of a plasma gasification facility in 

the same style as some commercial facilities in Japan. 

 

Figure 19.  Plasma Gasification Process. Source: HowStuffWorks (2016). 
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Plasma gasification technology is the newest technology of these three choices, 

recently incorporated in the design for the Gerald R. Ford-class aircraft carrier (NEO 

Energy 2016). The disadvantages of this technology include the high initial cost, the risks 

associated with investing in a newer technology with complicated equipment, and a 

higher maintenance costs over alternatives. 

D. USER DASHBOARD 

Now that we understand what we are calculating estimates for with this tab, we 

will cover an overview of inputs and outputs provided by the user dashboard, shown in 

Figure 20. All user input will be in cells B4-B13 and C11. Each cell is coded with an 

explanation of what is required via an internal comment, and has suggested ranges and 

max/min values to let the user know they might be out of the boundaries that would make 

the project possible or feasible. Once all data is entered, the spreadsheet automatically 

will update cells B16:D20. Calculations are provided in the next section, and the research 

supporting these calculations is included via the resources at the end of this appendix. 

 

Figure 20.  User Input Dashboard 
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Figure 21.  Net Present Value Chart 

E. CALCULATIONS 

1. Anaerobic Digestion Calculations 

For Anaerobic Digestion, the seven-tenths rule from Perry’s (Perry 2008) and the 

sample study from Biocycle (GRN 2016) magazine were used. A plant estimated at 34 

tons/day processing power and a CEPCI of 100 was valued at $8.5 million. The capital 

cost formula was then applied using the ratio of user input tons/day of material versus the 

sample plant and then adjusted via the current CEPCI. Costs per year were assumed at 

10% of the capital costs (Perry 2008). The revenue is a summation of the digestate and 

electricity produced, both of which are dependent on the percentage of organic materials 

that comprise the input waste. The digestate can be reasonably estimated to have a value 

of $60 per ton. Methane content of biogas can vary, but normally comprises 

approximately 55% by volume of the resultant gas. This lower methane content results in 

the biogas producing energy at approximately 6 kwh per cubic meter of methane, with 

expected engine efficiency of .4 when using combined heat and power engines (Perry 

2008). 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸 𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ � 𝐸𝐸𝐸𝐸𝐸𝐸.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶
𝐸𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶

�
.7
∗ �𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝐶𝐶𝐸𝐸𝐶𝐶𝐶𝐶𝐼𝐼𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑐𝑐
� Eq. 1 

𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶 Eq. 2 
𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

= .1∗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
365∗𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝑎𝑎𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶

  Eq. 3 

𝑉𝑉𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶 Eq. 4 
𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑃𝑃𝑉𝑉𝐸𝐸
𝑑𝑑𝐶𝐶𝑎𝑎

= �𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 ∗ 𝑃𝑃𝐸𝐸� + �𝐷𝐷𝐶𝐶𝐷𝐷𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 ∗ 𝑃𝑃𝐷𝐷� + �𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸� + 

�𝑅𝑅𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑�  Eq. 5 
𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 = ��115 ∗ 𝑊𝑊𝐶𝐶%𝑂𝑂𝑝𝑝𝑂𝑂𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶� + �95 ∗ 𝑊𝑊𝐶𝐶%𝐼𝐼𝑅𝑅𝐶𝐶𝑝𝑝𝑂𝑂𝐶𝐶𝑅𝑅𝐶𝐶𝐶𝐶��𝐸𝐸3𝑎𝑎𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶𝐶𝐶 ∗ �6∗10

−3 𝑀𝑀𝑀𝑀𝑀𝑀�
𝐸𝐸3𝑎𝑎𝐶𝐶𝐶𝐶𝑂𝑂𝐶𝐶𝐸𝐸

 Eq. 6 
 

where Eprod is the energy produced (MWH), PE is the price of energy � $
𝑀𝑀𝑀𝑀𝑀𝑀

�, Digestprod is 

the amount of digestate produced �𝐸𝐸𝐶𝐶𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

�, PD is the price of the digestate � $
𝐸𝐸𝐶𝐶𝑅𝑅
�, Feetip is 

the price per “tip” of a garbage truck � $
𝐸𝐸𝐶𝐶𝑅𝑅
�, Wwaste is the weight of incoming waste (tons), 

and RECs are renewable energy credits given to renewable energy producers that have a 

value � $
𝑀𝑀𝑀𝑀𝑀𝑀

�. 

2. Plasma Gasification Calculations 

Plasma gasification will take input waste of any mixture and turn it into Syngas, a 

flammable mixture of methane and other combustible gasses typically burned for 

electricity, and slag, a mixture of ash and inorganic materials that are processed to obtain 

purified components or landfilled. Estimation via equipment scale-up was conducted to 

calculate the capital cost of the plant. The tons per day of input waste was multiplied by 

$220,000, the average dollar cost per ton for a basic mass-burn plant equipment setup. 

This number was then scaled back by 25% to account for equipment that is covered by 

specific large pieces of equipment for estimation purposes (Clark 2016). Other basic 

equipment costs are added, including the scale house cost (where the waste enters the 

plant), the utility interconnections cost, the waste pre-processing (where the waste is 

shredded as much as possible), the plasma arc furnace itself, and the heat exchanger that 

keeps the reaction vessel, where the conversion happens, at an appropriate temperature. 

All of this produces a total capital cost, which is adjusted to current year dollars. 
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The energy produced is estimated at 533 kW per ton of waste input, though the 

actual amount will vary, largely based on the types of input waste and other factors. 

Table 2 shows that slag can be reasonably estimated at 350 lbs. per ton processed, and 

that the slag can be valued at approximately the price of the metals contained therein, 

$228 per ton processed. Additional revenue comes from the local tipping fee (averaged at 

$35/ton, entirely location dependent) and Renewable Energy Credits from the 

government (volatile market, very low estimate of $1/MWH produced via renewable 

sources). 

The Operation and Maintenance cost of a plasma gasification plant can be 

estimated to be approximately 10% of its capital cost per year based on the model 

presented in the NAWTEC article (Clark 2016). 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = �� $220,000

𝐸𝐸𝐶𝐶𝑅𝑅 𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸
� ∗ (𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸) ∗ .75 − $1,200,000� + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝑒𝑒𝑅𝑅𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸  Eq. 7 

𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶  Eq. 8 
𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

= .1∗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
365∗𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝑎𝑎𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶

        Eq. 9 

𝑉𝑉𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶 Eq. 10 
𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

= �𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 ∗ 𝑃𝑃𝐸𝐸� + �𝑆𝑆𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 ∗ 𝑃𝑃𝑆𝑆� + �𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸� + �𝑅𝑅𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑�Eq. 11 

𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 = 533 𝑘𝑘𝑤𝑤ℎ
𝐸𝐸𝐶𝐶𝑅𝑅 𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸

∗ 𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸  Eq. 12 
 

where Eprod is the energy produced (MWH), PE is the price of energy � $
𝑀𝑀𝑀𝑀𝑀𝑀

�, Slagprod is 

the amount of slag produced �𝐸𝐸𝐶𝐶𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

�, PS is the price of the slag � $
𝐸𝐸𝐶𝐶𝑅𝑅
�, Feetip is the price per 

“tip” of a garbage truck � $
𝐸𝐸𝐶𝐶𝑅𝑅
�, Wwaste is the weight of incoming waste (tons), and RECs 

are renewable energy credits given to renewable energy producers that have a value 

� $
𝑀𝑀𝑀𝑀𝑀𝑀

�. 

3. Incinerator Calculations 

Incinerators are some of the oldest and most basic WTE technology, and as such 

are well understood for cost estimation purposes. A standard mass-energy burn plant can 
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be estimated at $220,000 times the input tons per day for capital costs (Clark 2016). 

Additionally, taking into consideration losses due to efficiency and parasitic electricity 

costs the average amount of electricity produced is 200 KWH per ton of waste burned 

daily. The process reduces waste volume by up to 90%, meaning there is still 1/10th of the 

mass left to bury in landfills. Additionally, due to simplistic design, the operations and 

maintenance cost per day is approximately 3% of capital cost per day (Tang 2012). 

Power produced via this method is less efficient than the other methods, achieving 

average results of 280 kwh per ton waste burned, and the resulting ash is not pure enough 

to merit recycling efforts (Tang 2012). 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = � $220,000

𝐸𝐸𝐶𝐶𝑅𝑅 𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸
� ∗ (𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸)   Eq. 13 

𝑂𝑂𝐶𝐶𝐸𝐸𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶  Eq. 14 
𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

= .03∗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸 𝐶𝐶𝐶𝐶𝐸𝐸𝐸𝐸
365∗𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶𝑎𝑎𝐶𝐶𝐸𝐸𝐶𝐶𝐸𝐸𝐶𝐶

   Eq. 15 

𝑉𝑉𝐶𝐶𝐶𝐶𝑉𝑉𝐸𝐸(𝐶𝐶𝐶𝐶𝑙𝑙𝐸𝐸) = 𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

∗ 365 ∗ 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑎𝑎 ∗ 𝑎𝑎𝐸𝐸𝐶𝐶𝑂𝑂𝐶𝐶  Eq. 16 
𝑅𝑅𝐸𝐸𝑎𝑎𝐸𝐸𝑅𝑅𝑅𝑅𝐸𝐸
𝑑𝑑𝐶𝐶𝐶𝐶

= �𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 ∗ 𝑃𝑃𝐸𝐸� + �𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸� + �𝑅𝑅𝐸𝐸𝐶𝐶𝐶𝐶 ∗ 𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑�  Eq. 17 
𝐸𝐸𝐶𝐶𝑝𝑝𝐶𝐶𝑑𝑑 = (280 𝑘𝑘𝑘𝑘ℎ) ∗ (𝑊𝑊𝑤𝑤𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸)   Eq. 18 
 

where Eprod is the energy produced (MWH), PE is the price of energy � $
𝑀𝑀𝑀𝑀𝑀𝑀

�, Feetip is the 

price per “tip” of a garbage truck � $
𝐸𝐸𝐶𝐶𝑅𝑅
�, Wwaste is the weight of incoming waste (tons), 

and RECs are renewable energy credits given to renewable energy producers that have a 

value � $
𝑀𝑀𝑀𝑀𝑀𝑀

�. 
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